The Einstein evolution equations as a first-order quasi-linear symmetric hyperbolic system, I
نویسندگان
چکیده
منابع مشابه
First-order symmetric hyperbolic Einstein equations with arbitrary fixed gauge.
We find a one-parameter family of variables which recast the 3+1 Einstein equations into firstorder symmetric-hyperbolic form for any fixed choice of gauge. Hyperbolicity considerations lead us to a redefinition of the lapse in terms of an arbitrary factor times a power of the determinant of the 3-metric; under certain assumptions, the exponent can be chosen arbitrarily, but positive, with no i...
متن کاملElement Approximations to First-order Linear Hyperbolic Equations
Finite element approximations of the first-order hyperbolic equation U • Vu + au = / are considered on curved domains £2 C K2 . When part of the boundary of Í2 is characteristic, the boundary of numerical domain, Í2A , may become either an inflow or outflow boundary, so it is necessary to select an algorithm that will accommodate this ambiguity. This problem was motivated by a problem in acoust...
متن کاملA new approach for solving the first-order linear matrix differential equations
Abstract. The main contribution of the current paper is to propose a new effective numerical method for solving the first-order linear matrix differential equations. Properties of the Legendre basis operational matrix of integration together with a collocation method are applied to reduce the problem to a coupled linear matrix equations. Afterwards, an iterative algorithm is examined for solvin...
متن کاملFirst order linear fuzzy dynamic equations on time scales
In this paper, we study the concept of generalized differentiability for fuzzy-valued functions on time scales. Usingthe derivative of the product of two functions, we provide solutions to first order linear fuzzy dynamic equations. Wepresent some examples to illustrate our results.
متن کاملStrongly hyperbolic second order Einstein’s evolution equations
BSSN-type evolution equations are discussed. The name refers to the Baumgarte, Shapiro, Shibata, and Nakamura version of the Einstein evolution equations, without introducing the conformal-traceless decomposition but keeping the three connection functions and including a densitized lapse. It is proved that a pseudodifferential first order reduction of these equations is strongly hyperbolic. In ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Physics
سال: 1972
ISSN: 0010-3616,1432-0916
DOI: 10.1007/bf02099369